O que é um buraco negro?

De forma muito simplista, um buraco negro é uma região do espaço que contém tanta massa concentrada que nenhum objeto consegue escapar de sua atração gravitacional. Como a melhor teoria gravitacional no momento ainda é a Teoria da Relatividade Geral de Einstein, somos obrigados a mergulhar em alguns dos resultados preditos por essa teoria para entender os detalhes de um buraco negro, mas vamos começar devagar, pensando sobre a gravidade em circunstâncias relativamente simples.

Suponha que você está na superfície de um planeta. Você atira uma pedra direto para cima. Supondo que você não atire a pedra muito forte, ela subirá por algum tempo, mas eventualmente a aceleração devida à gravidade do planeta vai fazê-la descer de novo. Se você atirar a pedra com força suficiente, no entanto, você poderia fazê-la escapar inteiramente da gravidade do planeta.

A pedra continuaria a subir para sempre. A velocidade com que é necessário atirar a pedra para que ela escape da atração gravitacional do planeta é chamada de "velocidade de escape". Como seria de esperar, a velocidade de escape depende da massa do planeta: se o planeta for extremamente massivo, sua gravidade é muito intensa, e a velocidade de escape muito elevada.

Um planeta mais "leve" teria uma velocidade de escape inferior. A velocidade de escape também depende da distância a que você se encontra do centro do planeta: quanto mais perto você estiver, maior a velocidade de escape. A velocidade de escape da Terra é de 11,2 km/s (cerca de 40.000 km/h), enquanto que a velocidade de escape da Lua é de apenas 2,4 km/s (cerca de 8.600 km/h).

Imagine agora um objeto com tamanha massa, concentrada num raio de tal forma pequeno, que sua velocidade de escape seja maior que a velocidade da luz. Neste caso, uma vez que nada pode se deslocar mais rapidamente que a luz, nada poderá escapar do campo gravitacional desse objeto. Mesmo um raio de luz seria puxado de volta pela gravidade e não teria como escapar.

A idéia de uma concentração de massa tão densa que até mesmo a luz ficasse aprisionada vai bem ao passado, até Laplace, no século 18. Quase imediatamente em seguida de Einstein ter desenvolvido a relatividade geral, Karl Schwarzschild descobriu uma solução matemática para as equações daquela teoria que descreviam um tal objeto.

Foi somente muito mais tarde, com o trabalho de cientistas como Oppenheimer (o mesmo do Projeto Manhattan, da bomba atômica americana), Volkoff e Snyder, na década de 30, que se começou a pensar seriamente na possibilidade de que tais objetos pudessem realmente existir no Universo.

Esses pesquisadores mostraram que, quando uma estrela suficientemente massiva consome todo seu combustível, ela perde a capacidade de sustentar o encolhimento devido à sua própria atração gravitacional, e então desaba sobre si própria na forma de um buraco negro.

Na relatividade geral, a gravidade é uma manifestação da curvatura do espaço-tempo. Objetos massivos distorcem as dimensões de espaço e tempo de tal forma que as regras normais da geometria não se aplicam mais. Perto de um buraco negro essa distorção do espaço é extremamente intensa, provocando o aparecimento de certas propriedades muito estranhas.

Em particular, um buraco negro tem algo que se chama "horizonte de eventos", que é uma superfície esférica que marca as fronteiras do buraco negro. Você pode passar através do horizonte de eventos no sentido de entrada, mas depois não pode sair mais. Na verdade, uma vez cruzado o horizonte de eventos, você está inexoravelmente fadado a se aproximar cada vez mais da "singularidade" localizada no centro do buraco negro.

Você pode pensar no horizonte de eventos como um lugar em que a velocidade de escape é igual à velocidade da luz. Fora do horizonte de eventos, a velocidade de escape é menor do que a da luz, de modo que se você acionar seus foguetes com força suficiente poderá obter a energia necessária para escapar do buraco negro. Mas se você se encontrar para dentro do horizonte de eventos, não importa quão potentes sejam seus foguetes, pois você não poderá escapar.

O horizonte tem algumas propriedades geométricas realmente estranhas. Para um observador que esteja imóvel a alguma distância do buraco negro, o horizonte parece ser uma superfície esférica tranqüila e estática. Mas à medida que você se aproximar do horizonte, perceberá que ele está se movendo a uma velocidade espantosa.

Na verdade, está se expandindo à velocidade da luz! Isto explica porque é tão fácil atravessar o horizonte na direção para dentro, mas impossível retornar. Como o horizonte está se movendo à velocidade da luz, para poder escapar de volta através dele você teria que viajar a uma velocidade superior à da luz. Como você não poder viajar mais rápido do que a luz, você não pode escapar do buraco negro.

(Se toda esta história estiver soando muito estranha, não se preocupe. Ela é estranha. O horizonte é estático, num certo sentido, mas noutro sentido está se deslocando à velocidade da luz. É um pouco como aquela história de Alice no País das Maravilhas: ela tinha que correr tão rápido quanto possível, apenas para permanecer no mesmo lugar.)

Uma vez dentro do horizonte, o espaço-tempo é tão distorcido que as coordenadas que descrevem distância radial e tempo trocam suas posições. Ou seja, a coordenada que descreve a sua distância do centro, "r", passa a ser uma coordenada do tipo tempo, e a coordenada "t" passa a ser do tipo espacial. Uma conseqüência disto é que você não consegue mais evitar seu deslocamento no sentido de valores cada vez menores de r, da mesma forma como normalmente você não consegue evitar o deslocamento da coordenada de tempo na direção do futuro (ou seja, no sentido de valores maiores de t).

Eventualmente você vai atingir a singularidade, localizada em r=0. Você pode tentar evitá-la acionando seus foguetes, mas é inútil: não importa qual a direção em que você tente fugir, não conseguirá evitar seu futuro. Tentar evitar o centro de um buraco negro depois de ter atravessado seu horizonte é como tentar evitar a próxima segunda-feira.

Por falar nisso, o nome "buraco negro" foi inventado por John Archibald Wheeler, e parece ter ficado mesmo por ser muito mais atraente dos que os anteriores. Antes de Wheeler aparecer, esses objetos eram conhecidos como "estrelas congeladas". A explicação está adiante.

Qual é o tamanho de um buraco negro?

Há pelo menos duas maneiras diferentes de descrever o tamanho de alguma coisa. Podemos especificar que massa essa coisa tem, ou podemos especificar o espaço que ela ocupa. Primeiramente, vamos falar da massa dos buracos negros.

Em princípio, não existe limite nem superior nem inferior para a massa de um buraco negro. Qualquer quantidade de matéria pode, em teoria, se transformar num buraco negro, se for comprimida a uma densidade suficiente. Suspeita-se que a maioria dos buracos negros existentes no Universo tenham sido criados na morte de estrelas massivas, e por isso calcula-se que sua massa seja igual à dessas estrelas.

A massa típica de um desses buracos negros estelares seria da ordem de 10 vezes a massa do Sol, ou cerca de 10^{31} quilogramas. (Aqui está sendo usada a notação científica:10^{31} significa 1 seguido de 31 zeros, ou 10,000,000,000,000,000,000,000,000,000,000.) Os astrônomos também suspeitam que muitas galáxias abriguem buracos negros extremamente massivos em seus centros. Esses buracos negros teriam massas um milhão de vezes maiores que a do Sol, ou 10^{36} quilogramas.

Quanto mais massivo for um buraco negro, mais espaço ele ocupa. Na verdade, o raio de Schwarzschild (que representa o raio do horizonte de eventos) e a massa são diretamente proporcionais: se um buraco negro tem massa dez vezes superior à de um outro, seu raio é dez vezes maior. Um buraco negro com massa igual à do Sol teria um raio de 3 quilômetros.

Assim, um buraco negro típico com 10 massas solares teria um raio de 30 quilômetros, e um buraco negro de centro de galáxia com um milhão de massas solares teria um raio de 3 milhões de quilômetros. Este tamanho pode parecer muito grande, mas não o é em termos astronômicos. O Sol, por exemplo, tem um raio de cerca de 700.000 km, e assim um tal buraco negro supermassivo teria um raio apenas cerca de quatro vezes maior que o Sol.

O que me aconteceria se eu caísse num buraco negro?

Suponhamos que você entre em sua nave espacial e a dirija para o buraco negro com um milhão de massas solares localizado no centro da nossa galáxia. (Na verdade, há algum debate sobre se a nossa galáxia contém ou não um buraco negro no seu centro, mas vamos supor que por ora isso seja verdade.) A uma longa distância do buraco negro, você simplesmente desliga seus motores e deixa a nave deslizar na direção dele. O que acontece?

A princípio, você não sente nenhuma força gravitacional. Uma vez que você está em queda livre, todas as partes do seu corpo, e mais todas as partes da nave, estão sendo puxadas da mesma forma, e portanto você tem a sensação de ausência de peso. (Isto é exatamente o que se passa com astronautas em órbita da Terra: mesmo que tanto os astronautas quanto a nave estejam sendo puxados pela gravidade da Terra, eles não sentem nenhuma força gravitacional, porque tudo está sendo puxado exatamente na mesma proporção.) À medida que você se aproxima cada vez mais do buraco negro, no entanto, você começa a sentir forças gravitacionais do tipo "de maré".

Imagine que seus pés estejam mais próximos do centro do buraco negro do que sua cabeça (como se você estivesse caindo "em pé"). O puxão gravitacional fica mais intenso quanto mais você se aproxima do buraco negro, de forma que seus pés sentem uma força mais intensa do que sua cabeça. Como resultado, você se sente "esticado". (Esta força é chamada de força "de maré" porque é exatamente esse tipo de força que causa as marés na Terra.) Estas forças de maré ficam mais intensas à medida que você se aproxima do centro do buraco negro, e eventualmente você será feito em pedaços por elas.

Para um buraco negro de grandes dimensões como aquele onde você está caindo, as forças de maré só são perceptíveis a partir de 600.000 km de distância do centro. Atenção ao fato de que, neste caso, esta distância está já para dentro do horizonte de eventos. Se você estivesse caindo num buraco negro menor, digamos um com a mesma massa do Sol, as forças de maré seriam perceptíveis a cerca de 6.000 km de distância do centro, e portanto você seria desfeito muito antes de cruzar o horizonte de eventos desse buraco. (Essa é a razão porque imaginamos que o buraco negro do exemplo deveria ser grande, em vez de pequeno: para que você sobreviva pelo menos até cruzar o horizonte de eventos.)

O que é que você vê à medida que cai?

Por surpreendente que pareça, nada de muito interessante será visto, necessariamente. As imagens dos objetos distantes podem ficar distorcidas de maneiras estranhas, uma vez que a gravidade do buraco negro desvia a luz, mas não muito mais do que isso. Em particular, nada de especial acontece no momento em que você cruza o horizonte de eventos. Mesmo depois de cruzá-lo, você continua a ver objetos do lado de fora: afinal, a luz proveniente deles ainda pode chegar até você. Ninguém do lado de fora, no entanto, poderá vê-lo, naturalmente, já que a luz de dentro não consegue escapar para fora do horizonte.

Quanto tempo dura todo o processo? Bem, é claro que isso depende da distância a que você estava quando começou. Digamos que se partisse do repouso num ponto situado a uma distância da singularidade igual a dez vezes o raio do buraco negro. Neste caso, para um buraco com um milhão de massas solares, você levaria cerca de 8 minutos para atingir o horizonte. Depois de atingido esse ponto, em apenas sete segundos você atingirá a singularidade! Como essas contas são diretamente proporcionais ao tamanho do buraco negro, se você estivesse se dirigindo a um buraco negro muito menor, morreria muito mais depressa.

Uma vez cruzado o horizonte, nos sete segundos restantes você poderia entrar em pânico e acionar seus foguetes, numa tentativa desesperada de evitar a singularidade. Infelizmente isso é inútil, pois a singularidade está localizada no seu futuro (variável t crescente), e é impossível evitar o seu futuro. Na verdade, quanto mais os foguetes forem acionados, tanto mais depressa você se dirigirá para a singularidade. A melhor (e única) coisa a fazer é apreciar a viagem.

Minha amiga está a uma distância segura, observando minha queda em direção ao buraco negro.

O que ela vê?

Ela vê as coisas de forma muito diferente que você. À medida que você se aproxima do horizonte, ela o vê mover-se cada vez mais devagar. Na verdade, independente de quanto tempo ela esperar, nunca o verá atingir precisamente o horizonte.

Isto é mais ou menos a mesma coisa que se pode dizer sobre o material do qual o buraco negro foi formado inicialmente. Suponha que o buraco negro se formou a partir do colapso de uma estrela. À medida que a estrela que vai formar o buraco negro entra em colapso, sua amiga a vê cada vez menor, aproximando-se mas nunca chegando ao seu raio de Schwarzschild. É por esta razão que os buracos negros originalmente eram chamados de estrelas congeladas: porque pareciam se "congelar" num tamanho um pouco apenas maior do que o raio de Schwarzschild.

Porquê ela vê as coisas dessa maneira? Talvez a melhor explicação seja que se trata de uma ilusão de óptica. O buraco negro não leva um tempo infinito para se formar, assim como você não leva um tempo infinito para cruzar o horizonte de eventos. (Se não acredita, tente você mesmo! Você estará do outro lado do horizonte em oito minutos, e morto esmagado em uns poucos segundos a mais.)

À medida que você se aproxima do horizonte, a luz emitida por você levará cada vez mais tempo para chegar até a sua amiga. Com efeito, a luz que for emitida no momento exato em que você cruzar o horizonte ficará suspensa eternamente no horizonte, e nunca chegará até a sua amiga. Muito tempo pode já se ter passado depois de você cruzar o horizonte (e possivelmente morrido), os sinais luminosos emitidos por você que seriam a evidência daquele fato nunca chegarão à sua amiga.

Há uma outra forma de encarar toda esta questão. Num certo sentido, o tempo realmente passa mais devagar perto do horizonte do que longe dele. Suponha que você leve sua espaçonave até um ponto muito próximo do horizonte, e permaneça ali estacionado por algum tempo (queimando uma quantidade enorme de combustível para evitar cair no buraco negro). Depois, você retorna e se encontra de novo com sua amiga. Você descobrirá que ela envelheceu muito mais do que você durante todo o processo; o tempo passou mais devagar para você do que para ela.

Então, qual destas duas explicações (a da ilusão de óptica e a da desaceleração do tempo) é realmente a correta? A resposta depende do sistema de coordenadas que for usado para descrever o buraco negro. Segundo o sistema usual de coordenadas, chamado de "coordenadas de Schwarzschild", você cruza o horizonte de eventos quando a coordenada de tempo t tiver valor infinito. Portanto, nestas coordenadas realmente o tempo gasto para cruzar o horizonte de eventos é infinito. Mas a razão para isso é que as coordenadas de Schwarzschild oferecem uma visão muito distorcida do que está acontecendo no horizonte, ou próximo dele. De fato, no próprio horizonte as coordenadas estão infinitamente distorcidas (ou, para usar a terminologia apropriada, são "singulares").

Se você escolher um sistema de coordenadas que não sejam singulares no horizonte, então você verá que o tempo ao cruzar o horizonte é realmente finito, mas o tempo em que sua amiga vê você a cruzar o horizonte é infinito, pois a radiação levou um tempo infinito para chegar até ela. No fundo, é permitido usar qualquer dos sistemas de coordenadas, e portanto ambas as explicações são válidas. São apenas maneiras diferentes de dizer a mesma coisa.

Na prática, você vai efetivamente se tornar invisível à sua amiga bem rapidamente, pela simples razão de que a luz emitida por você vai sofrer desvios para o vermelho à medida que se afasta do buraco negro. A luz que você emitir num certo comprimento de onda será vista por sua amiga com um comprimento de onda maior. Os comprimentos de onda vão se tornando cada vez maiores à medida que você se aproxima do horizonte. Eventualmente, você simplesmente deixará de ser visível: a luz emitida estará desviada para o infravermelho, depois para ondas de rádio.

A partir de um certo ponto, os comprimentos de onda serão tão grandes que ela deixará de poder observá-los. Além disso, lembre-se que a luz é emitida em pacotes individuais chamados fótons. Suponha que você esteja emitindo fótons ao atravessar o horizonte. Num certo ponto, você emitirá o último fóton antes de cruzar o horizonte. Aquele fóton vai chegar à sua amiga num tempo finito - tipicamente menos de uma hora para um buraco negro de um milhão de massas solares - e depois disso ela nunca mais verá nada de você (afinal, nenhum dos fótons emitidos por você depois de cruzar o horizonte jamais chegarão a ela).

Se um buraco negro existisse, ele terminaria por sugar toda a matéria do Universo?

De jeito nenhum. Um buraco negro tem um "horizonte", que significa uma região da qual você não pode escapar. Se você cruzar o horizonte, está fadado a eventualmente atingir a singularidade. Mas se você ficar longe do horizonte, você pode perfeitamente evitar ser sugado para dentro do buraco negro.

Na verdade, para alguém a uma distância muito grande do horizonte, o campo gravitacional estabelecido por um buraco negro não tem nenhuma diferença do campo gravitacional estabelecido por qualquer outro objeto com a mesma massa. Em outras palavras, um buraco negro de uma massa solar não tem diferença nenhuma de qualquer outro objeto com uma massa solar (como por exemplo o próprio Sol), no que diz respeito à capacidade de "sugar" objetos distantes.

E se o Sol se tornasse num buraco negro?

Bem, em primeiro lugar, deixe-me assegurar-lhe que o Sol não tem nenhuma intenção de o fazer. Somente estrelas com massa consideravelmente superior à do Sol terminam suas vidas como buracos negros. O Sol vai permanecer mais ou menos como está por ainda uns cinco bilhões de anos.

Em seguida, vai passar por uma rápida fase como uma estrela gigante vermelha, durante a qual vai se expandir até englobar as órbitas (e os próprios planetas) de Mercúrio e Vênus, e ainda tornar a vida na Terra bastante desconfortável (oceanos em fervura, atmosfera escapando para o espaço, coisas assim). Depois disso, o Sol vai terminar a vida como uma mera estrela anã branca. Se eu fosse você, faria planos de mudança para algum lugar muito distante antes que qualquer dessas coisas aconteça. Ah, e também não compraria nenhum daqueles títulos do governo resgatáveis em 8 bilhões de anos.