Denomina-se Binômio de Newton , a todo binômio da forma (a + b)n , sendo n um número natural .

Exemplo: 

B = (3x - 2y)4 ( onde a = 3x, b = -2y e n = 4 [grau do binômio] ).

Nota 1:

Isaac Newton - físico e matemático inglês(1642 - 1727). 

Suas contribuições à Matemática, estão reunidas na monumental obra Principia Mathematica, escrita em 1687.

Exemplos de desenvolvimento de binômios de Newton :

a) (a + b)2 = a2 + 2ab + b2

b) (a + b)3 = a3 + 3 a2b + 3ab2 + b3

c) (a + b)4 = a4 + 4 a3b + 6 a2b2 + 4ab3 + b4

d) (a + b)5 = a5 + 5 a4b + 10 a3b2 + 10 a2b3 + 5ab4 + b5

Nota 2:

Não é necessário memorizar as fórmulas acima, já que elas possuem uma lei de formação bem definida, senão vejamos:

Vamos tomar por exemplo, o item (d) acima:

Observe que o expoente do primeiro e últimos termos são iguais ao expoente do binômio, ou seja, igual a 5.

A partir do segundo termo, os coeficientes podem ser obtidos a partir da seguinte regra prática de fácil memorização:

Multiplicamos o coeficiente de a pelo seu expoente e dividimos o resultado pela ordem do termo. O resultado será o coeficiente do próximo termo. Assim por exemplo, para obter o coeficiente do terceiro termo do item (d) acima teríamos: 

5.4 = 20; agora dividimos 20 pela ordem do termo anterior (2 por se tratar do segundo termo) 20:2 = 10 que é o coeficiente do terceiro termo procurado.

Observe que os expoentes da variável a decrescem de n até 0 e os expoentes de b crescem de 0 até n. Assim o terceiro termo é 10 a3b2 (observe que o expoente de a decresceu de 4 para 3 e o de b cresceu  de 1 para 2).

Usando a regra prática acima, o desenvolvimento do binômio de Newton (a + b)7 será:

(a + b)7 = a7 + 7 a6b + 21 a5b2 + 35 a4b3 + 35 a3b4 + 21 a2b5 + 7 ab6 + b7

Como obtivemos, por exemplo, o coeficiente do 6º termo (21 a2b5) ?

Pela regra: coeficiente do termo anterior = 35. Multiplicamos 35 pelo expoente de a que é igual a 3 e dividimos o resultado pela ordem do termo que é 5. 

Então, 35 . 3 = 105 e dividindo por 5 (ordem do termo anterior) vem 105:5 = 21, que é o coeficiente do sexto termo, conforme se vê acima.

Observações:

1) o desenvolvimento do binômio (a + b)n é um polinômio.

2) o desenvolvimento de (a + b)n possui n + 1 termos .

3) os coeficientes dos termos eqüidistantes dos extremos , no desenvolvimento de 

(a + b)n são iguais .

4) a soma dos coeficientes de (a + b)n é igual a 2n .

Fórmula do termo geral de um Binômio de Newton

Um termo genérico Tp+1 do desenvolvimento de (a+b)n , sendo p um número natural, é dado por

onde

é denominado Número Binomial e Cn.p é o número de combinações simples de n elementos, agrupados p a p, ou seja, o número de combinações simples de n elementos de taxa p

Este número é também conhecido como Número Combinatório.