Extraindo a raiz quadrada de cada membro da equação e lembrando que a raiz quadrada de todo número real não negativo é também não negativa, obteremos duas respostas para a nossa equação:

x + (b/2a) = + R[(b²-4ac) / 4a²]

ou

x + (b/2a) = - R[(b²-4ac) / 4a²]

que alguns, por preguiça ou descuido, escrevem:

contendo um sinal ± que é lido como mais ou menos. Lembramos que este sinal ± não tem qualquer significado em Matemática.

Como estamos procurando duas raízes para a equação do segundo grau, deveremos sempre escrever:

x' = -b/2a + R[b²-4ac] /2a

ou

x" = -b/2a - R[b²-4ac] /2a

A fórmula de Bhaskara ainda pode ser escrita como:

onde D (às vezes usamos a letra maiúscula "delta" do alfabeto grego) é o discriminante da equação do segundo grau, definido por:

D = b² - 4ac

Equação do segundo grau

Uma equação do segundo grau na incógnita x é da forma:

a x² + b x + c = 0

onde os números reais a, b e c são os coeficientes da equação, sendo que a deve ser diferente de zero. Essa equação é também chamada de equação quadrática, pois o termo de maior grau está elevado ao quadrado.